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Abstract 

Human visual system (HVS) models have been used in 
digital watermarking to minimize the visual effects of the 
watermark while increasing the strength of watermark. Such 
work has been applied to different watermarking schemes 
with varying degrees of success. 

Previous work at Digimarc resulted in a HVS model 
that inserts a high watermark signal in busy or high contrast 
areas, while reducing the watermark on connected 
directional edges where it becomes more visible. In certain 
instances, however, this technique inserts a high watermark 
signal in a region where masking due to the image is 
insufficient to hide the signal. For example, the watermark 
becomes apparent in areas with fine texture containing a 
dominant orientation like hair. 

This paper introduces a new HVS model, based on 
techniques that identify areas with a dominant orientation 
and suppress the watermark gain for those regions. Once a 
contrast is computed, another measurement (called 
directionality) is made on a small neighborhood using a 
standard wavelet filter set and a rotated wavelet filter set to 
determine if the region is highly oriented in one direction. 
The watermark strength gets suppressed if the corre
sponding area has high contrast and high directionality 
measure, while the gain reaches the maximum when the 
area has high contrast and low directionality measure. 

Experiments on problem images show that the 
proposed technique remedies the limitations of the previous 
HVS model to some extent, while not degrading the 
watermark detection performance. 

Introduction 

Digital watermarking is a process for modifying physical or 
electronic media to embed a machine-readable code into the 
media. This embedded information can be used in many 
ways, for example to provide copyright information, to 
prevent illegal duplication, or even as a dynamic link 
between the image and online digital data. For most 
applications, the image owner would like to make the 
encoded data robust enough to ensure its detection while 
maintaining the high quality of the original image. 

However, increasing robustness usually implies a larger 
watermark signal that in turn leads to greater image 

degradation. In order to minimize the visual effect, many 
watermarking schemes use a human visual perceptual model 
to identify how much watermark signal various image areas 
can hold while maintaining equal visibility. A major 
component of such a model is to measure local image 
contrast, and map increasing contrast values to a larger 

1,2 watermark signal. This can present a problem in some 
high contrast areas that contain directional edges. For 
example, the eye is much more sensitive to watermark 
signal added to an edge separating two distinct objects or a 
texture with a dominant orientation such as hair, than in a 
random texture of the same contrast. 

3In previous work at Digimarc, we inserted a high 
watermark signal in high contrast areas, while reducing the 
strength on connected directional edges. A modified Canny 
edge detector was used for finding connected directional 
edges. The modified Canny method suppressed the signal 
strength on edges separating two distinct objects, but not in 
a texture with a dominant orientation. 

In the new method described in this paper, the 
watermark signal is suppressed on both edges separating 
two distinct objects or a texture with a dominant orientation 
such as hair. High contrast areas with a dominant orienta
tion are detected by measuring directionality in a small 
neighborhood, using a standard wavelet filter set and a 
rotated wavelet filter set.4 The watermark signal is then 
reduced for these directional high contrast areas. 
Experiments on problem images show that the proposed 
technique based on perceptual models remedies the 
limitations of the previous HVS model to some extent, 
while not degrading the watermark detection performance. 

In the next Section, wavelet-based texture analysis is 
briefly described and a set of rotated wavelet filters is 
introduced. Computing rotation-invariant directionality 
measure of a texture image by using wavelet filters and its 
application to watermarking are presented in the following 
Section, which is followed by Results and Conclusions 
Sections. 

Wavelets and Texture Analysis 

Texture discrimination is one of the most difficult tasks 
5among low-level computer vision problems. Although 

textures are quickly preattentively discriminated by a 
6human observer, appropriate models for textures do not 
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exist. The perception of texture depends on local but not 
pointwise properties. However, a prescriptive procedure for 
selecting the neighborhood size over which textures can be 
analyzed is not available. This has motivated the use of a 
transform with which image properties are measured over 
domains of varying sizes. 

7Psychophysics, and physiological experiments have 
shown that multiscale/multiresolution transforms seem to 
appear in the visual cortex of mammals. Haar and Gabor 
wavelet decompositions, and Gaussian and Laplacian pyra
mids are examples of multiscale decompositions. In the last 
decade, wavelet theory has emerged and now provides a 
solid and unified framework for multiscale image analysis, 
making it a preferred tool because of several conceptual and 
computational advantages.8 This is the reason why we chose 
wavelet transforms for texture characterization in this study. 

Discrete Wavelet Transform (DWT) 
A commonly used method for 2-D DWT imple

mentation involves a successive application of 1-D QMF 
filters h and g along the columns and rows of the image. 
The subimages resulting from such operations to an image 
A are three detail images AHL, ALH, and AHH and an approx
imation image ALL, where the subscript denotes the 
frequency information of the rows and the columns, respec
tively. This process is repeated iteratively on the approxi
mation image ALL, with a translated and dilated version of 
basis functions for each consecutive scale to obtain multi
resolutional information. 

The 2-D DWT can be also performed by using four 2-D 
filters that could be obtained from tensor product of h and g 
filters. An example of one level 2-D DWT for a “Lena” 
image is shown in Fig. 1. Vertical (lower left), horizontal 
(upper right), and diagonal (lower right) details are clearly 
seen in corresponding subimages. 

Figure 1. An example of one level discrete wavelet transform. 
From upper left (clockwise), ALL, ALH, AHL, and AHH. 

The energy distribution of these subimages is known to 
8be an important characteristic for texture analysis. The 

energy is computed as follows: 

M−1 N−1
1 2 

� k = ∑∑ yk (m, n) , (1)
MN m n 

where M and N are the width and length of the subimage 
yk (m, n) . 

However, the diagonal subimage (AHH) contains infor
mation of two diagonal directions (45o and 135o) simul
taneously, and this limits the orientation selectivity that is 
useful for the applications where rotation-invariant features 
are needed. In this study, a rotated wavelet filter bank4 is 
used to add orientation selectivity to the standard DWT. 

Rotated Wavelet Filter Bank 
The rotated wavelet filter bank (RWFB) was introduced 

by Kim and Udpa4 to provide complementary texture infor
mation to the texture information obtained by a standard 
wavelet filter bank (SWFB) for a texture classification 
application. Although fine orientation selectivity can be also 
obtained by using Gabor wavelet filters or non-separable 

9,10 oriented wavelet transforms, RWFB is used in this study 
for simplicity and efficiency reasons. 

Four rotated filters are obtained by rotating each of four 
standard 2-D wavelet filters by 45 degrees, hence the image 
decomposition is performed in the direction of 45 and 135 
degrees. This decomposition process also results in three 
detail images and one approximation image. For visual 
understanding, the frequency partitioning of AHL and ALH 

from SWFB and RWFB are presented in Fig. 2. 

Figure 2. Frequency partitioning for standard (upper row) and 
rotated (lower row) wavelet filters that correspond to subimages 
AHL (left column) and ALH (right column). 
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Directionality Measure 

In this section, we describe techniques for measuring 
rotation-invariant directionality of the texture image and its 
use in digital watermarking as a part of the HVS model. 

Rotation-Invariant Directionality Measure 
For directional textures (texture with a dominant 

orientation), the energies of ALH and AHL vary significantly 
when the texture image gets rotated. The patterns of energy 
variations for the two subimages are 90 degrees apart from 
each other. 

Let D(� HL − � LH )  represents the energy difference 
between two subimages AHL and ALH, where D(a,b) = |a-b|. 
In the SWFB case, energy of AHL is maximum for a texture 
with pure vertical lines in it, while energy of ALH is almost 
zero. For a texture with horizontal lines, it works in the 
opposite way. The energy difference (D) between AHL and 
ALH for those textures becomes the maximum. However, if 
this texture image is rotated by 45 degrees, the energy of 
AHL and ALH is almost identical, resulting in minimum D. 
Likewise, the D from a single filterbank cannot serve as a 
rotation-invariant feature. The deficiency can, however, be 
met by introducing D from RWFB where the energy 
difference is obtained from the 45 degrees shifted in 
frequency regions. For example, if a texture that is strongly 
directional in vertical direction is rotated by 45 degrees, the 
D from SWFB reaches at its minimum, while that from 
RWFB reaches at its maximum. 

Hence, the combination of the energy difference 
between subimages AHL and ALH from both filter banks is 
expected to be constant, when each difference is properly 
normalized. This approximates the directionality of texture, 
and we call this DM (directionality measure). The DM is 
computed as follows: 

    

DM = 
 D(� HL − � LH )  + 

 D(� HL − � LH ) 
 (2) 

 ∑ � k   ∑ � k 
 k=HL,LH,HH SWFB  k=HL,LH,HH RWFB 

Application to Watermarking 
A contrast map is obtained by the method described in 

Ref. 3 and a directionality map was computed by using 
equation (2). Then, regions where watermark strength needs 
suppression are identified by combining the contrast and 
directionality maps. Regions with high contrast and high 
directionality are considered for suppression. The water
mark strength gets suppressed as follows: 

(K − DM ) × Contrast , (3) 

where K is a constant that a user defines depending on the 
amount of suppression. In this paper, K was 1.3. Thus the 
maximum watermark signal can be hidden in random 
textured areas, while visible artifacts in directional high 
contrast areas are avoided. 

Edge 

Watermark Signal Element 

(a) (b) 

Figure 3. Visibility reduction along dominant edges using 
perceptual modeling based on directionality. (a) before and (b) 
after suppression. 

Directionality was computed over disjoint blocks, size 
of 6×6 for 300 dpi images. The block size changes 
depending on the image resolution. Since the directionality 
is computed over a small block size, its responses over 
edges whose thickness is smaller than the block size is also 
significant. Hence, directionality measure becomes high 
over regions where strong edges and texture with dominant 
orientation exist. After the combination of the two maps, 
non-linear contrast to gain mapping is performed to output 
final gain map (see Ref. 3 for more detail). 

Fig. 3 illustrates an example showing how direction
ality based perceptual modeling reduces visibility of the 
digital watermark signal along image edge features. The left 
diagram illustrates a case with no perceptual modeling at 
edge features. In this case, the watermark signal elements 
fall along an edge, potentially creating noticeable artifacts 
due to the break up of the edge. In the right-hand side dia
gram, the digital watermark signal elements are suppressed 
along the edge based on the directionality measure. This 
diagram shows the extreme case where the watermark 
signal is completely suppressed along the edge. The water
mark signal elements may be reduced by a lesser degree, by 
adjusting the gain applied to them for example, depending 
on the values of the directionality measure and the local 
contrast measure as explained above. 

Results 

An artificial image was created in Figure 4a to illustrate the 
operation of the new perceptual masking algorithm. The 
straw on the left hand side of the image is a texture with 
strong directionality, whereas the pattern on the right hand 
side is random without any preferred direction. Figure 4b 
shows the result of adding a watermark signal with our old 
algorithm described in Ref. 3. The watermark visibility is 
worse on the left hand side of the image that has strong 
directionality. However the watermark is not very visible in 
the random texture on the right hand side. The result of 
using our new algorithm to add the watermark signal, at the 
same strength, is shown in Figure 4c. The watermark signal 
is suppressed on the left hand side that has strong 
directionality, while the strength of the watermark in the 
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random texture on the right hand side remains about the 
same as before. The visibility of the watermark in the 
directional and random texture areas is then approximately 
the same. This allows the overall signal strength to be 
increased as shown in Figure 4d, resulting in detectability 
which is about the same or better than the old method in a 
real image. 

a b 

d 

Figure 4. Watermarked images using old and new HVS models. 
(a) original image; (b) watermarked using an old model with a 
gain 5; (c) watermarked using a new model with a gain 5; (d) 
watermarked using a new model with a gain 7 (watermark 
accentuated for effect). 

A baby hair image has shown visibility problems when 
strongly marked, and this image was used for verification of 
the new HVS model. The snowy artifacts that appeared in 
the baby’s hair (Fig. 5a) are not significant in Fig. 5b for 
which the proposed perceptual masking was applied. The 
new algorithm seems to successfully improve the visibility 
by suppressing watermark strength in directional edge 
regions. This improvement was observed from multiple 
experiments on various types of images. 

Conclusion 

We have proposed an improved HVS model based on 
perceptual masking of a digital watermark signal in an 
image signal. A proposed model for digital watermarking 
identifies areas of dominant orientation within an image and 
modifies the watermark gain for those regions to minimize 
perceptibility of the digital watermark. The perceptual 
masking model computes local contrast and measures 

directionality of image features in small neighborhoods 
using a standard wavelet filter set and a rotated wavelet 
filter set. Results from the new HVS model showed 
visibility improvement in the problem regions, without 
sacrificing the overall detection rate. 

a b 

Figure 5. Watermarked image with (left) and without (right) 
proposed method (watermark accentuated for effect). 

In practice, a user will limit the watermark strength to 
avoid any image artifacts that limit the overall signal. The 
new algorithm allows an overall watermark strength to be 
higher before any artifacts are seen. The small signal loss on 
the directional edges is more than compensated by overall 
higher watermark strength leading to improved detect
ability. 
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